Systematic Analysis of Factors Influencing
Modulith Architecture Adoption over Microservices

Chandra Prakash
University of the Cumberlands, USA
cprakash@outlook.com
ORCID 0009-0006-6425-7560

Abstract—As organizations increasingly shift away from tra-
ditional monolithic architectures, the requirements for scalable,
flexible, and maintainable software systems have led to microser-
vice architecture adoption. However, microservices’ complexity
and operational overhead have presented significant challenges,
particularly in managing distributed systems, inter-service com-
munication, and deployment processes. In response, modulith
architecture has emerged as a middle-ground approach, offering
the benefits of modularity and scalability while mitigating some
of the drawbacks of monolithic and microservices architectures.

This paper comprehensively reviews the factors influencing
the adoption of modulith architecture over microservices. The
study identifies key drivers such as dependency management,
scalability, deployment efficiency, and system availability through
a detailed analysis of existing literature, case studies, and expert
opinions. The review reveals that modulith architecture offers a
simpler, more maintainable solution that preserves modularity
without the complexity of fully distributed systems. The findings
offer critical insights for software architects and organizations
considering architectural transitions, positioning modulith as a
viable alternative in scenarios where microservices may introduce
unnecessary complexity. This research contributes to the ongoing
discourse on software architecture by providing a nuanced
understanding of the trade-offs involved in adopting modulith
architecture. It proposes a set of considerations for organizations
navigating the evolving architectural landscape.

Index Terms—Modular Monolith, Modulith, Microservices,
Software architecture, Modular architecture

I. INTRODUCTION

OFTWARE architecture has been marked by significant

shifts in design paradigms due to the emergence of
microservices architectures. Traditionally, monolithic architec-
ture has been the default choice for building applications,
characterized by a unified codebase where all components are
tightly coupled and deployed as a single unit. While monoliths
offer simplicity in development and deployment, they result in
scalability, maintainability, and agility challenges as applica-
tions grow and complexity increases. These limitations have
led many organizations to explore alternative architectures,
particularly microservices.

Microservices architecture emphasizes decomposition to
break applications into smaller, independent services that
communicate over the network [1]. In the microservices
architecture, each service is designed to perform a specific
business function and can be developed, deployed, and scaled

ISBN978-4-89362-413-0 (C) 2024 TRON Forum

Sunil Arora
Dakota State University, USA
Sunil. Arora@trojans.dsu.edu
ORCID 0009-0007-3066-3461

independently. This approach offers significant benefits, in-
cluding improved scalability, flexibility, and the ability to
adopt different technologies within the same application [1].
However, microservices also introduce new challenges, such as
increased operational complexity, inter-service communication
overhead, and the need for advanced DevOps practices to
manage distributed systems effectively [2]. By consolidating
dependencies and internal communication, modulith architec-
tures enable smoother CI/CD pipelines and lower operational
overhead. Modulith allows DevOps teams to implement au-
tomation and monitoring more effectively, maintain agility,
reduce deployment risks, and support the scalable evolution
of systems without the high infrastructure costs.

While monolith and microservices are two extremes of
software architecture, modulith architecture has emerged as
a promising middle ground. A modulith retains the simplicity
of a monolithic deployment while focusing on internal modu-
larization. Moduliths provide many organizational and devel-
opmental benefits of microservices without the overhead of
managing distributed services by clearly separating concerns
and establishing well-defined boundaries within the codebase.
This approach allows organizations to adopt modular design
practices within a single deployable unit, offering a scalable
path toward eventual microservices migration if needed. De-
spite the growing interest in moduliths, there remains a lack
of understanding of the factors influencing their adoption.
This research paper strives to fill this gap by synthesizing
existing literature on modulith architecture and comparing it
with monolithic and microservices approaches. By examining
the various factors associated with modulith adoption, this
research paper provides a comprehensive overview of the
decision-making factors driving modulith architecture adop-
tion over microservices architecture.

II. LITERATURE REVIEW
A. Monolith Architecture

The monolithic architecture pattern is one of the oldest
and most widely used approaches in software engineering,
still favored by many organizations today. In monolithic
architecture, the entire application and its components are
combined into a single codebase and deployed as a single
unit [1]. This architecture offers several advantages, including
simplicity in development, testing, deployment, debugging,

and maintenance [2], [3]. Communication within a monolithic
application is handled internally via inter-process communica-
tion, contributing to its ease of maintenance and making it a
recommended choice for initial development phases [1].
However, as applications grow in size and complexity,
the inherent limitations of the architecture often outweigh
these benefits. Large and complex monolithic systems make
code changes difficult and increase the risk of unintended
impacts on other parts of the application [4]. Additionally,
the tightly coupled nature of monoliths can hinder effective
workforce utilization, as maintaining the system often requires
comprehensive knowledge of the entire application [1].

B. Microservices Architecture

Microservices architectural patterns have gained significant
recognition and widespread adoption over the last decade
[5]. Microservices are defined as an approach to developing
applications composed of small, independent services that run
in their own process space and communicate over lightweight
protocols such as HTTP [1], [5]. The core principle behind
microservices is to decompose an application’s functions
into business contexts, grouping functions that address com-
mon business domain problems. Microservices architecture
adheres to several key principles of software engineering:
(a) Single Responsibility—each service is responsible for
one specific function, ensuring no two services overlap in
functionality; (b) Autonomy—microservices are autonomous
units that are independently deployable; and (c) Service-First
Approach—services expose APIs to consumers, abstracting
internal implementation details [1].

Microservices offer numerous benefits, such as decom-
posing complex functionality into modular, domain-centric
components, allowing for easier development, change impact
identification, deployment, and scalability. The independence
of each service enables fault tolerance; if one service fails,
the rest of the application can continue to function [1], [5].
However, despite these advantages, microservices also present
several challenges. Their distributed nature often leads to
increased communication overhead between services, raising
infrastructure consumption. The proliferation of microservices
can introduce complexities in deployment, monitoring, and
management [5]. Furthermore, data management poses signif-
icant challenges; When multiple microservices require access
to the same data, this can lead to data duplication and
consistency issues [1] [5].

C. Modulith Architecture

In response to the challenges associated with microservice
architecture, a new approach known as modulith architec-
ture has emerged, blending the principles of monolithic and
microservices architectures. This hybrid architecture aims to
balance the benefits and drawbacks of both approaches, com-
bining their strengths while addressing inherent challenges.
Modulith architecture promotes the creation of modular com-
ponents with loose coupling and high cohesion, encapsulating

components based on distinct business domains. Unlike mi-
croservices, these modular components are deployed within
a single hosting environment, simplifying deployment and
reducing operational complexity [6]. Communication between
components occurs through well-defined API interfaces but
remains confined within the same application and database,
minimizing latency and avoiding the complexities of dis-
tributed resources.

The adoption of modulith architecture has gained traction
after being successfully implemented by industry leaders such
as Shopify and Amazon, which reported significant perfor-
mance and cost benefits. The architecture has demonstrated
improved scalability and availability, garnering further recog-
nition from other major players, including Google with its
Service Weaver project, and the SpringOne framework, both
of which support building modular monolith applications that
achieve microservices-like benefits.

Despite the growing industry acceptance of the challenges
inherent in monolithic and microservices architectures and
modulith’s potential to address them, academic literature on
the subject remains limited. Influential industry experts, in-
cluding [2] [3], have advocated for the modular monolith or
modulith approach as a preferable starting point for archi-
tectural decomposition before moving to full microservices.
This study draws on the limited available literature, industry
case studies, and insights from reputable experts to build a
comprehensive argument for modulith architecture. It focuses
on the key factors influencing software architecture deci-
sions—such as dependency management, deployment, hosting,
scalability, and availability—and examines how modulith ar-
chitecture addresses these concerns. This research paper aims
to demonstrate that modulith can be an effective solution
for organizations transitioning from monolithic architectures,
offering a balanced approach that mitigates the complexities
of microservices while enhancing performance and maintain-
ability.

III. RESEARCH QUESTION

The study has identified the research questions below based
on fundamental factors behind software architecture decision-
making and how those factors offer the benefits of both worlds
via modulith architecture.

RQ1: What are the key factors influencing the adoption of
modulith over microservices architecture?

RQ2: How does modulith architecture address the perfor-
mance and complexity challenges typically associated with
microservices architecture?

RQ3: What are the scalability and availability implications
of adopting modulith architecture in large-scale systems com-
pared to microservices?

IV. METHODOLOGY

To ensure transparency and objectivity while reporting re-
cent progress in the literature review on Modulith architecture,
this systematic literature review has utilized the methodology

presented by Tranfield et al. [7]. The objectives of this sys-
tematic literature review are: first, to identify the proposals
that compared the architectural benefits of modulith and mi-
croservices architecture; second, to identify the impact of those
benefits on performance, scalability, and maintainability.

This study follows the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA). PRISMA
model allows for a comprehensive and transparent approach
to systematic reviews and inclusion of relevant studies. Table
I highlights the inclusion and exclusion criteria for the paper
selection. Fig. 1 describes the PRISMA approach for selecting
system literature reviews.

Yy
Records identified from*: Records identified from:
Records (n = 11300) Websites (n = 20)
Organisations (n = 4)
S
Ty l

Records screened

(n=40)
| v

Reports sought for retrieval Reports sought for retnieval
g (n=14) (n=10)

;] 1

Reports assessed for eligibility
(n=4)

Reports assessed for eligibility
(n=9)

[

Studies included in review
8 | o-9

Reports of included studies
! (n=4)j

Fig. 1. PRISMA Flow Chart. Adoption from Page et al. [8]

TABLE 1
INCLUSION AND EXCLUSION CRITERIA

Exclusion Criteria
Papers unrelated to the re-
search question.

Inclusion Criteria

Papers published in the last
18 months

Peer-reviewed papers pub-
lished in journals or presented
in conference papers.

Papers discussing key adop-
tion factors of modulith archi-
tecture

Case studies discussed in the
last 5 years by the organiza-
tion on their technology blogs

Paper written in languages
other than English

Papers unrelated to the archi-
tectural decision-making pro-
cess

Case studies discussed
through blog posts other than
implementing organization.

A. Search strategy

To answer the research questions, the search strategy was
used to identify the relevant studies addressing the key factors
influencing the modulith architectural design. The search terms
used included “modulith architecture,” “microservices vs.
modulith,” “modulith architecture benefits,” “modulith adop-
tion factors,” and “modular monolith” with the combination of
and/or criteria to search for better results. The search criteria
were applied to Google Scholar and the IEEE website to
search for relevant articles, and articles published in the last
18 months were selected.

B. Data Extraction and analysis

Identifying and obtaining relevant articles based on study
questions was part of the data extraction and analysis pro-
cedure. The characteristics of these studies were then ex-
tracted: author(s), publication year, and research technique.
Key findings and methodological details were also collected.
Throughout the data analysis phase, the retrieved data was
classified into themes or subjects related to the study questions.

C. Validity

The study has performed a literature review to answer the
identified research questions. While answering the research
questions, it is equally important to improve the validity
and depth of the review paper. Shaheen et al. [9] have
recommended using multiple databases, screening articles, and
corroborating the findings with other well-established sources.
This study utilized two other methods: 1) case studies directly
from the organizations that have implemented modulith archi-
tecture and 2) expert opinion from the leading industry experts.

V. RESULT AND DISCUSSION

The results and discussion section provides an in-depth ex-
ploration of the findings related to the research questions posed
in the study. It is organized into three distinct parts: a) Review:
In the Review section, we examine the literature review,
summarizing the key discoveries and trends that emerge from
previous research. We identify the essential factors influencing
the successful adoption of modulith architecture, shedding
light on what motivates organizations to transition to this
model. b) Case Study: The case study section comprehensively
examines the real-world application of modulith architecture
within well-respected organizations. We analyze specific case
studies to illustrate how these organizations have successfully
implemented the architecture and the tangible benefits they
have experienced as a result, such as enhanced performance,
operational efficiency, and cost savings. c) Expert Opinion:
Here, we gather insights from industry experts who share their
advice on the process of moving from a traditional monolithic
architecture to a more flexible modular architecture. This
section discusses the practical considerations and strategic
guidance these experts provide, emphasizing how modulith
architecture serves as a compelling solution to common chal-
lenges, including performance issues, increased complexity,
scalability constraints, and availability concerns. Overall, this

section aims to create a comprehensive understanding of
how modulith architecture can be effectively adopted and the
broader implications for organizations in today’s fast-paced
technological landscape.

A. Review

Based on the literature review, four different factors have
emerged as decision-making factors for software architecture
[11, [4], [10]-[14], [22] have advocated for dependency man-
agement. Several authors [4], [10], [11], [13], [14], [23] have
demonstrated how centralized deployment management is crit-
ical to decision-making. Several studies provided scalability as
the foundation for architecture to scale resources at critical
times [4], [10], [11], [13], [14]. Software availability and
reliability have been identified as another factor that drives
the organization’s ability to serve their consumer and play an
essential part in reputation management [4], [10], [11], [13],
[14], [23], [24].

TABLE II
REVIEW PAPERS

Authors

Faustino, Gongalves, Portela, & Rito Silva
(2024) [4]; Johnson, Kharel, Mannam-
plackal, Abdelfattah, & Cerny (2024) [11];
Lopes & Silva (2023) [12]; Su & Li (2024)
[14]; Su, Li, & Taibi (2023) [13]; Tseche-
lidis, Nikolaidis, Maikantis, & Ampatzoglou
(2023); M. Felisberto (2024) [15]

Barde (2023) [10]; Faustino, Gongalves,
Portela, & Rito Silva (2024) [4]; John-
son, Kharel, Mannamplackal, Abdelfattah, &
Cerny, 2024 [11]; Su & Li (2024) [14]; Su,
Li, & Taibi (2023); Olariu (2023) [13]
Barde (2023) [10]; Faustino, Gongalves,
Portela, & Rito Silva (2024) [4]; John-
son, Kharel, Mannamplackal, Abdelfattah, &
Cerny, 2024 [11]; Su & Li (2024) [14]; Su,
Li, & Taibi (2023) [13]

Barde (2023) [10]; Faustino, Gongalves,
Portela, & Rito Silva (2024) [4]; John-
son, Kharel, Mannamplackal, Abdelfattah, &
Cerny, 2024 [11]; Su & Li (2024) [14]; Su,
Li, & Taibi (2023) [13]; Olariu (2023) [23];
@vrelid, Moseng, & LO Vinje (2023) [24]

Feature

Dependency

Deployment

Scalability

Availability

1) Dependency: Monolithic software architectures have in-
troduced numerous challenges, with dependency management
being a significant concern. In monoliths, shared domain
models often increase component coupling, reducing system
flexibility and potentially causing cascading failures when
changes are not properly anticipated. Lopes and Silva [12]
have argued that while shared domain implementations in
monoliths simplify development, they also introduce scal-
ability challenges. This increased dependency can lead to
inefficiencies in development teams, resulting in slower devel-
opment cycles, longer time-to-market, and stifled innovation.

Although microservice architecture offers increased flexi-
bility, Lopes and Silva [12] caution that improper decom-
position based on business domains can introduce additional
complexities through distributed communication, potentially

outweighing the benefits. It is important to note that depen-
dency challenges are not unique to monoliths; microservices
can also suffer from poorly defined interfaces, leading to chatty
traffic and increased performance overhead [4].

In light of these challenges, modular monolith (or “mod-
ulith”) architecture has emerged as a viable alternative.
Faustino et al. [4] recommend modulith as a practical approach
for agile software development while maintaining system per-
formance. Modulith architecture reduces latency through in-
process module interactions, avoiding the overhead associated
with inter-service communication in microservices.

To address the complexities of system decomposition and
module identification, Lopes and Silva [12] propose a model
incorporating various features, including dependency analysis,
to guide the creation of modular systems. Barde [10] advocates
for modular monoliths as a means to effectively utilize domain
models, reusing domain entities to reduce dependencies and
increase agility. This approach aligns closely with fundamental
software engineering principles.

A qualitative study by Tsechelidis et al. [15] highlights mod-
ulith architecture as a better-integrated yet logically isolated
approach, yielding significantly improved results compared to
microservice architecture. Johnson et al. [11] further support
this view, arguing that modulith architecture enables more
effective dependency management compared to microservices.
While both monolithic and microservice architectures present
dependency challenges, modulith architecture offers a bal-
anced approach. It combines the benefits of monolithic sim-
plicity with improved modularity, potentially addressing many
of the dependency-related issues faced in software develop-
ment today.

2) Deployment: Deployment strategies significantly differ
across architectural paradigms, each presenting unique chal-
lenges and benefits. In monolithic systems, while tight com-
ponent coupling facilitates efficient deployment, the single-
process nature necessitates frequent full-system deployments,
increasing risk with each iteration [12]. Conversely, microser-
vices allow for targeted deployments of specific services but
introduce complexities in deployment processes, versioning,
maintenance of versioned components, and ensuring compat-
ibility across services [4].

Modulith architecture emerges as a balanced approach,
allowing organizations to deploy a single artifact, thus sim-
plifying the deployment process compared to the multiple
independently deployable units in microservices [4], [12].
Johnson et al. [11] argue that modulith architecture provides
superior holistic system visibility compared to other models,
facilitating easier monitoring and management of the appli-
cation as a single unit, thereby reducing the complexity of
tracking multiple services and their interactions.

The adoption of modern DevOps practices has been cru-
cial in accelerating software delivery and reducing variabil-
ity through automation. While microservices architecture has
demonstrated effective use of DevOps practices for deploy-
ment, becoming a cornerstone of the approach, Barde [10]
notes that these practices can be equally beneficial when

applied to modular monolith systems, enhancing deployment
flexibility.

Testing and validation during deployment are critical for
ensuring software quality. Modulith architecture simplifies and
streamlines these processes during releases [10]. Furthermore,
cyclomatic complexity, a key measure of software quality,
can be more effectively applied to modulith architecture to
assess stability and build confidence in the software—a level
of measurement that may not be as readily achievable in pure
monolithic or microservices architectures [10].

Modulith architecture offers several additional advantages in
the deployment context. The first is simplified infrastructure,
which reduces the need for complex setups like service meshes
or orchestrators often required by microservices. The second
is consistent environments, which allow modules to promote
consistency across different environments, mitigating issues
arising from deploying multiple services across varied settings.
The third is efficient resource utilization, where resources are
managed within a single runtime, eliminating the need for
separate containers or VMs for each service and leading to
more efficient use of computing resources.

Modulith architecture presents a compelling middle ground
for deployment strategies, combining the simplicity of mono-
lithic deployments with some of the flexibility microservices
offer. This approach and modern DevOps practices can lead to
more efficient, reliable, and manageable deployment processes
in complex software systems.

3) Scalability: Scalability remains a critical challenge for
monolithic systems and serves as a primary motivator for the
adoption of microservices architecture. Monoliths, character-
ized by their single-process nature, face inherent limitations in
scalability, often requiring vertical scaling of both storage and
processing resources. This approach can quickly become cost-
prohibitive and technically challenging as system demands
grow. Faustino et al. [4] emphasize scalability as a key driver
for organizations transitioning away from monolithic architec-
tures. In contrast, microservices offer a more flexible approach
to scalability through decomposition. This architectural style
allows individual components to be scaled independently
based on their specific demands, leading to more efficient
resource utilization and improved overall system performance.

However, the transition to microservices is not without
its challenges. Lopes and Silva [12] highlight that improper
identification of service boundaries during decomposition can
introduce new scalability issues in microservices architectures.
This underscores the importance of careful system design and
domain-driven decomposition when adopting microservices.
Recent research by Faustino et al. [4] acknowledged these
challenges and proposed the concept of “modulith” as a
viable architectural alternative. A modulith aims to lever-
age the benefits of modular design while minimizing the
complexities associated with inter-service communication in
fully distributed microservices systems. This approach can
serve as a middle ground, offering improved scalability over
traditional monoliths while reducing the operational overhead
of managing numerous independent services.

Barde [10] further explores this concept, highlighting how
modular monoliths can provide a pathway for gradual mi-
gration when designed with appropriate frameworks such as
Google’s Service Weaver. This approach allows organizations
to design systems that can initially operate as a cohesive unit
but have the flexibility to be split and hosted as separate
microservices as scalability needs evolve. Additionally, recent
studies have shown that the choice between monoliths and
microservices is not always binary. Abgaz et al. [16] proposed
a “microservice-first” approach, where systems are initially de-
signed with a microservices design approach but deployed as a
monolith. This strategy allows for easier future decomposition
while avoiding premature optimization and the complexities
of distributed systems management.

While microservices offer significant advantages in terms of
scalability, organizations must carefully consider their specific
needs, technical capabilities, and growth projections when
choosing an architectural style. The emergence of hybrid
approaches like moduliths and microservice-first designs pro-
vides a spectrum of options for balancing scalability, main-
tainability, and operational complexity.

4) Availability: System availability is crucial for organi-
zations to maintain continuous service to their consumers.
Key factors contributing to high availability include data con-
sistency, asynchronous behavior, and enhanced performance.
Recent research has shed light on how different architectural
approaches address these concerns. Faustino et al. [4] highlight
that modulith architecture offers several advantages regard-
ing availability and data consistency: the first is improved
data consistency by maintaining the data model in a single
location. This centralized approach reduces the complexities
associated with distributed data management in microservices
architectures. Second, modulith architecture minimizes over-
the-network remote calls, enhancing data consistency and
maintaining asynchronous behavior. This reduced network
communication can lead to improved system responsiveness
and reduced latency. Third is balanced asynchronous behavior
while preserving the benefits of asynchronous operations.
Modulith architecture avoids the extreme decoupling that
can sometimes lead to data inconsistencies in microservices
systems.

Modulith architecture enables system-wide availability
through the use of specialized tools to provide a compre-
hensive view of the entire system’s health and performance.
This granular monitoring capability helps identify and ad-
dress potential issues, ensuring system availability. Domain-
specific tracking can be used to enforce quality metrics at the
component level. Holistic monitoring ensures that each part
of the system meets predefined performance, reliability, and
availability standards.

Barde [10] notes that these levels of measurement and
enforcement may not be entirely possible in traditional mono-
lithic architectures due to their lack of domain-centric design.
Similarly, achieving comprehensive system-wide visibility in
highly distributed microservices implementations can be chal-
lenging, making it difficult to consistently enforce and measure

quality metrics across all services.

Monoliths often struggle with granular monitoring and
domain-specific optimizations. Their tightly coupled nature
can make it difficult to isolate and address performance
issues that affect availability. Whereas microservices offer
high flexibility, microservices can introduce complexities in
maintaining data consistency across distributed services. The
distributed nature can also make it challenging to get a holistic
view of system health and availability. The emergence of
moduliths strikes a balance by offering domain-centric design
with the ability to monitor and optimize at a modular level
while maintaining a unified system view for comprehensive
availability management. While each architectural style has
its strengths, modulith architecture offers a compelling balance
of data consistency, performance, and availability. Its ability
to support comprehensive monitoring and quality enforcement
makes it an attractive option for organizations seeking to
optimize their system’s availability without sacrificing the
benefits of modular design.

B. Case Study

1) Shopify: Shopify operates a Software as a Service (SaaS)
platform that provides an e-commerce solution for merchants,
enabling them to sell their products through a subscription
model. In addition to its core e-commerce platform, Shopify
offers various merchant solutions, including payment process-
ing, shipping, and point-of-sale (POS) services. As of 2023,
Shopify supports 5.23 million online stores and boasts 2.1
million daily active users, with a gross merchandise volume
of $235 billion and a total revenue of $7.1 billion [17].

Shopify initially adopted a monolithic architecture without
clear boundaries within the codebase. Over time, as changes
accumulated, the inherent nature of monolithic architecture
led to increased software complexity and high coupling
between different processes. Although monolithic systems
are advantageous for their simplicity, rapid implementation,
and straightforward deployment pipelines, they also present
scalability and maintenance challenges as applications grow.
Regarding microservices, Westeinde [18] argues that this
approach is not universally applicable, as microservices can
introduce complexities related to distributed communication
and component isolation. Similar findings by Prakash [5]
suggest that inadequate domain knowledge and poorly defined
service boundaries in microservices can lead to excessive inter-
service communication, resulting in performance bottlenecks.
While the superior scalability of microservices can mitigate
some performance issues, the associated challenges remain
significant.

In analyzing microservices adoption, Westeinde [18] iden-
tifies data access across distributed services as a critical
challenge, often involving cross-network communication, la-
tency issues, reliability concerns, and increased change man-
agement overhead. In response, Shopify adopted a modulith
architecture, which enforces boundaries between components,
aiming to strike a balance between the benefits of mono-
liths and microservices. This approach involved reorganizing

the codebase according to business domains and isolating
dependencies between these domains [18]. Recognizing the
difficulty in managing these boundaries, Shopify developed a
specialized tool to track dependency isolation [18]. According
to Miiller [19], the modulith architecture enabled Shopify to
streamline onboarding, accelerate testing, and simplify feature
implementation.

Analyzing Shopify’s modulith implementation offers valu-
able insights into this architectural approach’s practical bene-
fits and trade-offs. Following are the insights identified from
Shopify’s case study. A) Dependency- Shopify had a dense
cyclical dependency between the components with their mono-
lith system, and adopting modulith helped reduce the circular
dependencies, use of inversion of the control mechanism, and
efficient management of dependencies between the compo-
nents. B) Deployment- Shopify still uses the single deployment
unit with modulith. However, modulith architecture lays the
path of component extraction into standalone applications. The
organization can also extract certain functions into separate
services for better management. C) Scalability- After adopting
modulith architecture, Shopify utilized horizontal and vertical
scaling. Shopify uses vertical scaling within the modulith
components, and horizontal scaling is used for extracted
components. D) Availability- Modulith architecture has helped
Shopify achieve better code organization with a modular
structure. It has reduced the change impact risk on other parts
of the system. Selected extracted components can be scaled
for higher availability without scaling the entire system.

Shopify’s modulith implementation highlights the benefits
of a well-structured monolith compared to microservices.
Scalability and maintainability are identified as two major
benefits of reducing the complexities of distributed systems.
Shopify’s modulith adoption addressed the shortcomings of
monolith systems while maintaining the benefits of a monolith
and avoiding the complexity of microservices architecture.

2) Amazon Video: In a case study of Amazon Prime Video,
the organization shifted from a distributed microservices archi-
tecture to a modulith architecture to enhance performance and
reduce costs [20]. This case challenges the common belief
that microservices inherently lead to better scalability and
performance. Other researchers, such as Fowler [2], Newman
[3], and Prakash [5], have highlighted the importance of a
use-case-based transition to microservices rather than building
them from scratch. Amazon Prime Video, one of the world’s
largest streaming services with 163 million viewers in the
USA and over 335 million globally [21], initially employed a
microservices-based architecture for its Video Quality Analy-
sis (VQA) system. The VQA system utilized AWS Step Func-
tions, Lambda, and S3 to host separate components, including
media converters, defect detectors, and an orchestration service
[20].

However, Amazon Video faced significant challenges with
VQA’s microservices architecture, particularly in scaling its
infrastructure, as the distributed communication between com-
ponents via AWS Step Functions failed to meet performance
expectations, handling only 5% of the expected load capacity.

This architecture also led to increased data transfer and higher
operational costs [20]. Amazon re-architected the VQA system
to address these issues, consolidating distributed microservices
into a single monolithic process with modular components.
Internal communication was streamlined using an orchestrator,
and infrastructure was shifted to Amazon EC2 and ECS,
optimizing data transfer to an efficient in-memory model.

Evaluating Amazon’s VQA across five parame-

ters—dependency, deployment, scalability, availability,
and performance—revealed the following:

o Dependency—The initial microservices implementation
had high interdependencies and relied heavily on external
services for data flow and orchestration. The modulith
implementation reduced external dependencies, resulting
in cost savings and improved performance.

o Deployment—Deployment complexity in the microser-
vices architecture stemmed from the numerous compo-
nents and services. The modulith approach allowed VQA
to deploy as a single unit on EC2 and ECS, simplifying
the deployment process and enhancing control over var-
ious components.

o Scalability—Although microservices are generally
praised for their scalability, VQA’s microservices
setup created bottlenecks, particularly with AWS Step
Functions, which capped scaling at 5% of the expected
load.

« Availability—While microservices theoretically enhance
availability through distributed components, VQA’s re-
liance on multiple services reduced overall availability.
By consolidating into a modulith, VQA reduced in-
frastructure dependencies, minimized points of failure,
simplified monitoring, and improved overall availability.

Amazon’s VQA case study highlights the specific chal-

lenges of microservices, particularly in managing distributed
transactions, and demonstrates how the shift to modulith ar-
chitecture significantly improved scalability and performance
while reducing costs by 90%. The consolidation of compo-
nents into a single process eliminated costly data transfers, and
simplified orchestration allowed for more effective resource
utilization and management. Although microservices excel at
horizontal scaling, Amazon’s VQA achieved superior scalabil-
ity through vertical service cloning, showcasing how modulith
architecture can outperform microservices in specific contexts.

C. Expert Opinion

This study synthesized expert guidance from leading in-
dustry figures to validate the findings on modulith archi-
tecture. Notably, the insights of Martin Fowler and Sam
Newman—two of the most respected voices in software ar-
chitecture—underscore the potential of moduliths or similar
approaches. Fowler [2] argues that starting with a modulith is a
prudent choice for new applications, cautioning that premature
adoption of microservices can introduce unnecessary complex-
ity when system boundaries and requirements are not well-
defined. Similarly, Newman [3] acknowledges the advantages
of microservices but advises that they are not suitable for every

project, particularly in the initial stages or when organizational
maturity does not align with the demands of a microservices
architecture.

Both Fowler [2] and Newman [3] provide compelling argu-
ments for adopting a modular monolith (modulith) architec-
ture, especially during the early stages of a project or when
an organization lacks the readiness to manage the complex-
ities associated with microservices. Their collective insights
suggest that moduliths offer an effective starting architecture,
providing simplicity, ease of management, and a more straight-
forward path to scalability as the system evolves. Furthermore,
moduliths mitigate organizational readiness risks by main-
taining a centralized, manageable code structure, which helps
avoid the premature complexity inherent in microservices. This
expert advice supports the strategic adoption of moduliths as
a robust and flexible foundation, making them a pragmatic
choice for many organizations.

VI. RESULTS

Our review of software architectures reveals a nuanced
landscape where traditional monoliths and microservices each
present distinct challenges. Monolithic architectures, while
offering simplicity in deployment and development, often
struggle with scalability, high coupling, and difficulties main-
taining and evolving the system over time. On the other
hand, microservices, touted for their scalability and flexibil-
ity, introduce their own set of complications, particularly in
terms of performance, system complexity, and inter-service
communication overhead.

A key finding from our review is the critical importance of
domain-driven decomposition in microservices architectures.
Without this, organizations risk creating distributed monoliths
that inherit the drawbacks of the monolith and microser-
vices architectural paradigms without realizing their respective
benefits. In this context, modulith architecture emerges as a
promising middle ground. It offers a balanced approach that
aims to combine the strengths of monolithic and microservices
architectures while mitigating their individual weaknesses.
Moduliths are particularly advantageous for smaller teams,
legacy system modernization, and environments where mi-
croservices’ complexity and operational overhead are pro-
hibitive. In a fast-changing world, green field microservices
may not yield the business value desired by organizations, and
the study recommends taking a more pragmatic approach to
modularizing the legacy system through modulith architecture
design.

A. Implications for Practice

The findings from our comprehensive review, case studies,
and expert opinion provide valuable insights for practitioners
and researchers engaged in the software architecture field.
Organizations must take the time to thoroughly evaluate their
unique use cases, scaling requirements, and their teams’ skills
and competencies when determining the most suitable archi-
tecture—monolithic, microservices, or modulith.

Particularly noteworthy is the modulith approach, which
merits serious consideration as a practical alternative. This
architecture is especially beneficial for systems that demand
a level of modularity while not necessarily needing the com-
plexities of complete distribution or the implications of dis-
tributed services. Organizations can enhance their operational
efficiency and adaptability by selecting the architecture that
is appropriately suitable while meeting their specific business
needs.

B. Gaps and Future Research

The study primarily relied on the systematic literature
review to understand the motivation behind modulith adoption.
However, due to the limited availability of prior research, much
of the literature review and case study have relied on isolated
examples from specific industries and lack a generalization
across other business domains.

Future studies can benefit from investigations related to
performance, long-term scalability, and maintenance of mod-
ulith systems. A quantitative analysis of performance, scal-
ability, and maintainability comparisons between monoliths,
microservices, and moduliths across various applications and
scales is recommended. Future Longitudinal studies tracking
the evolution of systems implemented as moduliths would be
beneficial in understanding how well this architecture supports
system growth and adaptation over time.

VII. CONCLUSION

This study used a systematic review to analyze the factors
influencing the adoption of modulith architecture. Our research
findings indicate that key factors driving modulith adop-
tion include simplified dependency management, deployment,
and availability. In addressing performance and complexity
challenges, modulith architecture demonstrates its strength
by reducing the overhead often associated with inter-service
communication and cohesive management of shared resources
within a unified codebase. The discussed findings contribute
valuable insights into the software architectural decision-
making process and recommend modulith architecture as a
viable alternative to address the complexity of distributed com-
munications of services. This study highlights the importance
of aligning architectural choices with organizational needs,
the technical maturity of the team, and system requirements
over microservices as a default choice. Future studies are
encouraged to investigate the longitudinal impact of modulith
adoption on operational costs, developer productivity, and
long-term scalability as system requirements evolve.

ACKNOWLEDGMENT

Grammarly was utilized in the writing process to assist with
editing, spell-checking, and grammar enhancement.

REFERENCES

[1] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microser-
vice Architecture: A performance and scalability evaluation,” IEEE Ac-
cess, vol. 10, pp. 20357-20374, 2022. doi:10.1109/access.2022.3152803

[2] M. Fowler, “Monolith First,” martinfowler.com,
https://martinfowler.com/bliki/MonolithFirst.html.

[3] S. Newman, ”Microservices for Greenfield?”

https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/.

[4] D. Faustino, N. Gongalves, M. Portela, and A. Rito Silva, “Stepwise
migration of a monolith to a microservice architecture: Performance and
migration effort evaluation,” Performance Evaluation, vol. 164, p. 102411,
May 2024. doi:10.1016/j.peva.2024.102411

[5] C. Prakash, “Zero-Trust Architecture Approach to Secure Microservices
for the Healthcare Insurance Industry,” dissertation, ProQuest, 2024

[6] M. AIT SAID, A. EZZATI, S. MIHI, and L. BELOUADDANE, “Mi-
croservices adoption: An industrial inquiry into factors influencing de-
cisions and implementation strategies,” International Journal of Com-
puting and Digital Systems, vol. 15, no. 1, pp. 1417-1432, Mar. 2024.
doi:10.12785/ijcds/1501100

[7] D. Tranfield, D. Denyer, and P. Smart, “Towards a methodology for devel-
oping evidence-informed management knowledge by means of systematic
review,” British Journal of Management, vol. 14, no. 3, pp. 207-222, Sep.
2003. doi:10.1111/1467-8551.00375

[8] M. J. Page et al., “The Prisma 2020 statement: An updated guideline for
reporting systematic reviews,” BMJ, Mar. 2021. doi:10.1136/bmj.n71

[9] N. Shaheen et al., “Appraising systematic reviews: A comprehensive guide
to ensuring validity and reliability,” Frontiers in Research Metrics and
Analytics, vol. 8, Dec. 2023. doi:10.3389/frma.2023.1268045

[10] K. Barde, “Modular Monoliths: Revolutionizing Software Architecture
for efficient payment systems in Fintech,” International Journal of Com-
puter Trends and Technology, vol. 71, no. 10, pp. 20-27, Oct. 2023.
doi:10.14445/22312803/ijctt-v71i110p103

[11] J. Johnson, S. Kharel, A. Mannamplackal, A. Abdelfattah, and T. Cerny,
“Service weaver: A promising direction for cloud-native systems?,”
Proceedings of the 14th International Conference on Cloud Computing
and Services Science, 2024. doi:10.5220/0012624500003711

[12] T. Lopes and A. R. Silva, “Monolith microservices identification: To-
wards an extensible multiple strategy tool,” 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C), pp. 111-115,
2023. doi:10.1109/icsa-c57050.2023.00034

[13] R. Su, X. Li, and D. Taibi, Back to the Future: From Microservice to
Monolith, 2023. doi:10.48550/arXiv.2308.15281

[14] R. Su and X. Li, “Modular Monolith: Is this the trend in software
architecture?,” Proceedings of the 1st International Workshop on New
Trends in Software Architecture, vol. 169, pp. 10-13, Apr. 2024.
doi:10.1145/3643657.3643911

[15] M. Tsechelidis, N. Nikolaidis, T. Maikantis, and A. Ampatzoglou,
“Modular monoliths the way to standardization,” Proceedings of the 3rd
Eclipse Security, Al, Architecture and Modelling Conference on Cloud
to Edge Continuum, Oct. 2023. doi:10.1145/3624486.3624506

[16] Y. Abgaz et al.,, “Decomposition of monolith applications into mi-
croservices architectures: A systematic review,” IEEE Transactions on
Software Engineering, vol. 49, no. 8, pp. 4213-4242, Aug. 2023.
doi:10.1109/tse.2023.3287297

[17] “Shopify Announces
Year 2023

Full-
Document,

Fourth-Quarter and
Financial Results,”

https://www.sec.gov/Archives/edgar/data/1594805/000159480524000006/exhibit99 1 pres:

[18] K. Westeinde, “Deconstructing the monolith,” Shopity,
https://shopify.engineering/deconstructing-monolith-designing-software-
maximizes-developer-productivity.

[19] P. Miiller, “Under deconstruction: The state of shopify’s monolith,”
Shopify, https://shopify.engineering/shopify-monolith.

[20] M. Kolny, “Scaling up the Prime Video audio/video monitoring
service and reducing costs by 90%,” Prime Video Tech,
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-
video-audio-video-monitoring-service-and-reducing-costs-by-90.

[21] J. Stoll, “Global netflix and prime video viewership 2024,” Statista,
https://www.statista.com/statistics/1449359/netflix-amazon-prime-video-
viewers-worldwide-by-country/.

[22] M. Felisberto, "The trade-offs between Monolithic vs. Distributed
Architectures,” arXiv preprint arXiv:2405.03619, May. 2024.
doi:10.48550/arXiv.2405.03619

[23] E. Olariu, "Overcoming Challenges in Migrating Modular Monolith
from On-Premises to AWS Cloud.” 2023 22nd RoEduNet Conference:
Networking in Education and Research (RoEduNet). IEEE, 2023.

[24] E. @vrelid, OH Moseng, and LO Vinje. ”Operational Backbone Work:
Modernization Activities in the Migration of Monolith-Oriented IT Ar-
chitectures.” NIKT: Norsk IKT-konferanse for forskning og utdanning.
Bibsys Open Journal Systems, 2023.

