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Abstract—Efficient memory operations are critical for real-
time performance in automotive embedded systems. The 
memcpy function, widely used in communication and graphical 
processing tasks, often falls short of meeting the low latency 
requirements when using the standard C library. 

This paper introduces an optimized memcpy algorithm for 
32-bit ARM microcontrollers, leveraging assembly-level 
enhancements to maximize microcontroller register usage and 
integrate advanced techniques such as byte-shifting and cache 
prefetching. Context-aware optimizations tailored for 
automotive applications improve aligned and unaligned data 
transfers across various memory types, achieving up to an 
eightfold increase in bandwidth. 

Experimental results highlight significant performance 
improvements, especially in unaligned memory access scenarios, 
positioning the optimized memcpy as a robust and efficient 
solution for automotive embedded systems. 
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I. INTRODUCTION 

In the automotive sector, handling data efficiently is 
crucial as advanced systems like telematics need strong data 
handling and transfer methods. The memcpy function is 
commonly used to transfer data for communication [1] and 
graphics tasks. 

However, the standard memcpy might not meet the low 
latency needs of automotive applications that typically run on 
real-time operating systems [2]. It often lacks optimization [3] 
for unaligned memory accesses, which happen when data is 
accessed from an address not a multiple of its size. This issue 
is common in the automotive field for various reasons, 
including compression algorithms like LZ4 [4] that may 
involve random combinations of aligned and unaligned 
accesses, on top of other operational complexities. 

Investigations into the standard memcpy reveal significant 
idle time due to cache misses, indicating opportunities for 
optimization to enhance performance and memory efficiency. 

This paper presents an optimized memcpy for 32-bit ARM 
MCUs used on automotive systems with little-endian byte 
ordering, utilizing the Greenhills toolchain during the 
software development process. 

II. EXISTING SOLUTION 

This section focuses on the standard implementation of the 
memcpy algorithm, as the subsections examine its strengths, 

potential limitations, as well as evaluate whether this existing 
implementation addresses current challenges effectively. 

A. Standard memcpy 

The standard memcpy implementation, written in ARM 
assembly [5], efficiently handles larger volumes of data in 
four-byte chunks when the source address, destination 
address, and length are all aligned to 4 bytes. Figure 1 
illustrates how this optimization (is compiled to) leverage 
single-register load/store instructions, such as LDR and STR, 
to improve performance. However, if any of these parameters 
are unaligned, the standard algorithm falls back to a less 
efficient, byte-by-byte transfer approach. 

 
Fig. 1. Block diagram for standard memcpy 

 
Fig. 2. Observing idle gaps on standard memcpy 

Figure 2 shows further analysis on an oscilloscope, 
revealing a visible gap after every 32 bytes of data copied. 
This gap indicates substantial idle time caused by cache 
misses when the CPU retrieves data from the source and 
transfers it to the destination, a problem also present in 



existing GNU LIBC implementations [6]. This observation 
highlights potential opportunities for optimizing the memcpy 
operation to minimize these idle periods and enhance the 
algorithm's performance and overall memory efficiency. 

As observed, the oscilloscope measurements reveal 
significant idle periods due to cache miss-induced latency, 
evidenced by gaps after every 32 bytes of data transfer. 
Optimization efforts are constrained by the utilization of a 
single register for bulk data movement despite the availability 
of additional unbanked registers that could enhance 
throughput. Moreover, the algorithm reverts to a byte-by-byte 
transfer mode when the source or destination addresses are 
unaligned, leading to suboptimal performance. These 
observations underscore the need for advanced optimization 
strategies to address these performance bottlenecks of current 
memcpy implementations on ARM-based systems. 

III. MEMORY OPTIMIZATION TECHNIQUES 

Based on the above findings, several memory optimization 
techniques have been identified as potential solutions for 
addressing the identified performance bottlenecks and 
inefficiencies. 

A. Cache Prefetching 

The ARM instruction set includes the PLD (Preload Data) 
instruction, which allows the processor to asynchronously 
prefetch data from the main memory into the data cache. This 
prefetching reduces latency by ensuring that data is readily 
available in the cache when needed, mitigating the delays 
associated with accessing slower main memory. Furthermore, 
the PLD instruction functions as an NOP (no operation) on 
non-cacheable memory without adverse effects on such 
systems [7, Chapter A3.8.4]. By leveraging the PLD 
instruction, it is possible to reduce idle time and prepare data 
in advance, thereby addressing the observable gaps in the 
standard memcpy implementation as detected via oscilloscope 
analysis. 

B. Multiple Register Access Per Instruction 

A key feature of the ARM architecture is its capability to 
perform multiple register accesses within a single instruction, 
exemplified by the Load Multiple (LDM) and Store Multiple 
(STM) instructions [7, Chapter A4.7]. This functionality is 
particularly advantageous in scenarios requiring the rapid 
transfer of large data blocks between memory locations, as it 
significantly reduces the overhead associated with repetitive 
load/store operations. Leveraging LDM and STM instructions 
can enhance the efficiency of memcpy to optimize its overall 
data transfer performance. 

C. Data Alignment 

Memory alignment is critical for system performance and 
reliability, as unaligned access generally incur cycle penalties 
[8, Chapter 3.3.2] and can lead to hardware faults. While some 
processors, such as the Cortex-M7, can handle more efficient 
accesses to specific unaligned memory locations using 
instructions like LDR and STR [9, Chapter 3.3.5], others 
enforce stricter alignment requirements. For example, the 
Cortex-M0+ does not support unaligned access, resulting in a 
HardFault if attempted [10, Chapter 3.3.4]. Even within the 
Cortex-M7 architecture, not all memory regions support 
unaligned accesses [9, Chapter 3.3.5]. Since memory 
addresses tend to become aligned after a few bytes of copying, 
maximizing such aligned accesses through innovative 

manipulations can significantly enhance the performance of 
memcpy operations. 

IV. PROPOSED SOLUTION 

The proposed algorithm design for the optimized memcpy 
aims to boost performance in data copying operations by 
leveraging identified memory optimization techniques. These 
techniques enhance the efficiency of both aligned and 
unaligned memory copies, thereby improving overall system 
performance. 

There are three primary use cases for executing memcpy in 
a 32-bit MCU architecture, excluding the alignment of the 
copy length as an optimization criterion. The processor instead 
focuses on the alignment of the source and destination 
addresses as shown in Figure 3. 

 
Fig. 3. Block diagram for optimized memcpy 

A. Copy between aligned source and destination 

With data alignment achieved for source and destination 
addresses, advanced techniques such as cache prefetching and 
multiple register access per instruction can be utilized without 
incurring additional cycle penalties. Data from the source 
address can be prefetched asynchronously into the data cache 
several cache lines ahead while the processor concurrently 
writes any current bytes to main memory via the store buffer 
when STM instructions have been executed. By preloading 
data into the cache, the processor can load large chunks of 
anticipated data into registers from the faster cache memory 
rather than accessing the slower main memory when load 
multiple instructions are invoked. This is illustrated in Figure 
3, within box 1. 

B. Copy between unaligned source and/or destination 

In a 32-bit MCU, alignment of both source and destination 
addresses can be simultaneously achieved if their final 2 bits 
are identical after copying a certain number of bytes. For 
example, when the source and destination addresses are 
initially located at 0x9 and 0x49, respectively, after copying 3 
bytes of data, both addresses will become aligned at 0xC and 
0x4C. Once alignment is attained, the optimized algorithm can 
transition to the code path designated for copying between 
aligned source and destination addresses, thereby leveraging 
the existing optimizations detailed in the previous subsection. 
This is illustrated in Figure 3, within box 2. 

In contrary, the source and destination addresses cannot be 
aligned if their final 2 bits are different, regardless of the 
amount of data copied. Therefore, alignment techniques for 
the source and destination addresses must be considered and 
performed separately. A byte-by-byte approach is utilized for 
the destination address until it becomes aligned to 4 bytes. 
Once this alignment is achieved, the process narrows down to 
three possible scenarios, where the offset required to align the 
source address is either 1, 2, or 3 bytes. This offset can be 



loaded and stored in a spare register to achieve alignment for 
the source address. At this point, the source and destination 
addresses will be aligned, enabling optimization techniques 
such as multiple register access per instruction and cache 
prefetching without incurring cycle penalties. 

However, advanced byte-shifting techniques are necessary 
to ensure accurate data copying from the source to the 
destination, as shown in Figure 4. For example, with an offset 
of 1 byte to align the source address in a little-endian system, 
after the first offset byte is loaded into a spare register, the next 
4 bytes loaded into another register must be shifted left by 8 
bits. This shift allows the merging of only 3 bytes with the first 
byte, ensuring the correct data is retrieved. This process is 
repeated for all subsequent data until a store multiple 
instruction is executed. 

 
Fig. 4. Example of byte shifting 

At the end of this process, any remaining offset bytes must 
be accurately stored back into memory, which involves 
ensuring that these bytes are correctly aligned and placed into 
the appropriate memory locations to maintain data integrity 
and consistency. This is illustrated in Figure 3, within box 3. 

V. EXPERIMENTATION AND FINDINGS 

The experiments described in this section were designed 
to assess its performance enhancements across various 
memory configurations, and were conducted at an active clock 
frequency of 100 MHz across three memory types: NC (non-
cacheable memory), M1 (cacheable memory), and M2 
(smaller cacheable memory with different protocol than M1), 
ranked by their processing speed. Test sizes ranged from 2KB 
to 20KB as the testing program encompassed five distinct 
types of tests: aligned, unaligned with the same final 2 bits, 
and offsets of 3, 2, and 1 byte (considered as unaligned with 
different final 2 bits). Each test type was executed ten times to 
ensure the statistical significance and reliability of the results. 

A. Validation Steps 

The performance test procedure involved initialising a 
source buffer with data, then flushing and invalidating the data 
cache associated with the test buffers to ensure results were 
unaffected by any residing data in the cache. Interrupts were 
suspended to prevent higher-priority tasks from affecting 
performance measurements during the memcpy operations. 
System timers recorded the execution time of each memcpy 
instance. Bandwidth results were calculated based on test size 
and execution time, before the results were compared between 
the optimized and standard memcpy implementations. 
Following the optimizations, a second round of oscilloscope 
analysis was also conducted to verify the effectiveness of the 
implementation, particularly in reducing the gaps previously 
observed after every 32 bytes of data copying. 

B. Results and Analysis 

This section presents and analyzes the outcomes of the 
tests conducted to evaluate the performance of the proposed 
optimized memcpy implementation, which has previously 

been verified to maintain accurate data copying by checking 
for an expected return value of 0 using a memcmp after 
copying data from a source to its destination. 

Tables I, II and III provide the percentage improvement of 
the optimized memcpy over the standard implementation for 
various memory transfer configurations and data sizes (2k, 4k, 
8k, 16k, 20k) for aligned and unaligned (same and different 
final 2 bits) memory transfers. 

TABLE I.  IMPROVEMENTS FOR ALIGNED MEMORY TRANSFERS 

Source to Destination 
Data size 

2k 4k 8k 16k 20k 

M1 to M1 66% 81% 91% 81% 72% 

M1 to M2 62% 69% 52% -24% -27% 

M2 to M1 63% 66% 68% 72% 72% 

M2 to M2 46% 65% 37% 4% -3% 

NC to NC -2% 0% -1% -1% 1% 

NC to M1 -2% -2% -1% 0% -1% 

NC to M2 1% 0% 0% 0% 0% 

M2 to NC 178% 183% 185% 186% 186% 

M1 to NC 175% 197% 212% 220% 222% 

TABLE II.  IMPROVEMENTS FOR UNALIGNED MEMORY TRANSFERS 
(SAME FINAL 2 BITS) 

Source to Destination 
Data size 

2k 4k 8k 16k 20k 

M1 to M1 192% 237% 257% 248% 244% 

M1 to M2 189% 224% 177% 25% 30% 

M2 to M1 60% 65% 67% 66% 66% 

M2 to M2 58% 59% 122% 27% 14% 

NC to NC 248% 340% 416% 466% 479% 

NC to M1 202% 280% 337% 380% 390% 

NC to M2 54% 52% 52% 47% 45% 

M2 to NC 620% 639% 648% 653% 654% 

M1 to NC 633% 697% 735% 757% 762% 

TABLE III.  IMPROVEMENTS FOR UNALIGNED MEMORY TRANSFERS 
(DIFFERENT FINAL 2 BITS) 

Source to Destination 
Data size 

2k 4k 8k 16k 20k 

M1 to M1 110% 125% 132% 129% 128% 

M1 to M2 107% 123% 94% 24% 25% 

M2 to M1 67% 71% 72% 66% 65% 

M2 to M2 67% 68% 41% 5% 3% 

NC to NC 101% 116% 126% 127% 126% 

NC to M1 70% 81% 90% 95% 96% 

NC to M2 52% 50% 50% 44% 43% 

M2 to NC 666% 675% 697% 699% 703% 

M1 to NC 516% 549% 579% 590% 594% 

 
Generally, bandwidth increases are observed for scenarios 

involving cacheable source memories until the cache is 
exhausted for certain memory protocols, as evidenced by test 
sizes exceeding 8KB for M2 destinations, notably with even 
negative increases of -24% and -27%, observed at 16k and 20k 
respectively during M1 to M2, as shown in Table I. 



In contrast, the most significant improvements are 
observed in M2 to NC and M1 to NC transfers, with gains of 
up to 703% and 762%, as shown in Tables III and II 
respectively, highlighting the efficiency of the optimized 
memcpy for cacheable to non-cacheable memory operations. 
While there may be negligible impact on bandwidth for non-
cacheable source memories during aligned memory transfers, 
substantial performance improvements of up to 479%, as 
shown in Table II, are still observed across these non-
cacheable scenarios during unaligned memory transfers. 

Overall, the optimized memcpy offers significant 
enhancements in data transfer performance, particularly for 
unaligned memory transfers with up to eight times 
improvements. These gains can be achieved with a modest 
increase of less than half a kilobyte in code size, making the 
optimized implementation a viable and efficient solution for 
automotive embedded systems requiring high-performance 
data transfers. 

 
Fig. 5. Pipeline activity for optimized memcpy on the oscilloscope 

As illustrated in Figure 5, the pipeline activity analysis 
validates the concurrent process of data prefetching from the 
memory device. At the same time, the processor accesses the 
previous 32 bytes from the cache. This asynchronous 
prefetching strategy significantly enhances overall memory 
performance by effectively overlapping data retrieval with 
processor execution, minimizing latency, and maximizing 
data throughput. 

While further optimization may be needed for specific 
scenarios involving these heterogeneous memory protocols, 
especially for scenarios involving M2 destinations during 
larger data transfers, the optimized memcpy has demonstrated 
substantial performance enhancements across various data 
transfer use cases in automotive embedded systems with 
minimal downsides that effectively balances improved 
efficiency and resource utilization, making it a robust solution 
for automotive embedded systems. 

VI. CONCLUSION 

The optimized memcpy algorithm presented in this paper 
significantly enhances the performance of data transfer 
operations in 32-bit ARM microcontrollers, addressing the 
inefficiencies of existing memcpy implementations. By 
employing advanced memory optimization techniques such as 
cache prefetching, multiple register access per instruction, and 
precise data alignment, the proposed solution effectively 

reduces idle time and improves data throughput. Experimental 
validation across various memory configurations and data 
sizes demonstrates substantial performance gains, particularly 
for unaligned memory transfers, with improvements reaching 
up to 762%. These enhancements can be achieved with a 
minimal increase in code size, ensuring the solution's viability 
in resource-constrained automotive embedded systems while 
meeting the stringent performance requirements of real-time 
automotive applications. 

VII. FUTURE WORK 

Future work could focus on further optimizing the 
algorithm for specific memory configurations and larger data 
transfers, especially for aligned memory transfers. 
Additionally, exploring the potential for hardware-level 
support to further enhance memory transfer efficiency could 
yield significant benefits. Extending these optimization 
techniques to other commonly used functions in automotive 
embedded systems could also provide comprehensive 
performance improvements across the board as the concepts 
and techniques utilized in this study are expected to be 
reusable across multiple CPU architectures, such as the 
TriCore, with only minor adaptations required for the source 
code. 

ACKNOWLEDGMENT 

We would like to express our gratitude to Continental 
Automotive for providing us with the opportunity to explore 
and work on this optimized memcpy. We acknowledge that the 
source code and memory types used in this paper are 
proprietary and will remain confidential, and as such, shall not 
be published. 

REFERENCES 
[1] G. Schirner and R. Domer, “ABSTRACT COMMUNICATION 

MODELING: A Case Study Using the CAN Automotive Bus,”  Jan. 
2005. [Online]. Available:  

https://www.cecs.uci.edu/~doemer/publications/IESS_05_125.pdf 

[2] L. Harvie, “RTOS Essentials: A Quickstart Guide for Embedded 
Engineers.”, Mar. 2024. [Online]. Available:  

https://runtimerec.com/wp-content/uploads/2024/03/rtos-essentials-
ebook.pdf 

[3] A. Fog, “Instructions for asmlib: A multi-platform library of highly 
optimized functions for C and C++,” May. 2022. [Online]. Available:   

https://agner.org/optimize/asmlib-instructions.pdf 

[4] Various contributors, lz4.c, 2024, GitHub Repository. [Online]. 
Available: 

https://github.com/lz4/lz4/blob/dev/lib/lz4.c. 

[5] G. Chatelet, C. Kennelly, S. (L.) Xi, O. Sykora, C. Courbet, X. D. Li, 
and B. D. Backer, “automemcpy: A Framework for Automatic 
Generation of Fundamental Memory Operations,” in Proc. 2021 ACM 
SIGPLAN International Symposium on Memory Management (ISMM 
’21), Virtual, Canada, June 22, 2021. doi:  

https://doi.org/10.1145/3459898.3463904. 

[6] Various contributors, “25131 – memcpy performance problem with 
ARM 32 A9be due to high cache-misses,” 2019. [Online]. Available: 

https://sourceware.org/bugzilla//show_bug.cgi?id=25131 

[7] ARM, ARMv7-M Architecture Reference Manual (Revision r1p0), 
2005. 

[8] ARM, ARM Cortex-M4 Technical Reference Manual (Revision r0p0), 
2010. 

[9] ARM, ARM Cortex-M7 Devices Generic User Guide (Revision r1p2), 
2015. 

[10] ARM, ARM Cortex-M0+ Devices Generic User Guide (Revision 
r0p1),  2012.


