
ISBN978-4-89362-413-0 © 2024 TRON Forum

Optimized memcpy for 32-bit ARM Automotive
Embedded Systems

1st Yucan Yu
Infocomm Technology

Singapore Institute of Technology
Singapore, Singapore

2100888@sit.singaporetech.edu.sg

2nd Yongsheng Daniel Zhou
Software and Central Technologies

Continental Automotive
Singapore, Singapore

daniel.zhou@continental.com

4th Muhamed Fauzi Bin Abbas
Infocomm Technology

Singapore Institute of Technology
Singapore, Singapore

fauzi.abbas@singaporetech.edu.sg

3rd Ying Taat Soh
Software and Central Technologies

Continental Automotive
Singapore, Singapore

yingtaat.soh@continental.com

Abstract—Efficient memory operations are critical for real-
time performance in automotive embedded systems. The
memcpy function, widely used in communication and graphical
processing tasks, often falls short of meeting the low latency
requirements when using the standard C library.

This paper introduces an optimized memcpy algorithm for
32-bit ARM microcontrollers, leveraging assembly-level
enhancements to maximize microcontroller register usage and
integrate advanced techniques such as byte-shifting and cache
prefetching. Context-aware optimizations tailored for
automotive applications improve aligned and unaligned data
transfers across various memory types, achieving up to an
eightfold increase in bandwidth.

Experimental results highlight significant performance
improvements, especially in unaligned memory access scenarios,
positioning the optimized memcpy as a robust and efficient
solution for automotive embedded systems.

Keywords—memcpy, optimization, ARM, cache, register,
alignment

I. INTRODUCTION

In the automotive sector, handling data efficiently is
crucial as advanced systems like telematics need strong data
handling and transfer methods. The memcpy function is
commonly used to transfer data for communication [1] and
graphics tasks.

However, the standard memcpy might not meet the low
latency needs of automotive applications that typically run on
real-time operating systems [2]. It often lacks optimization [3]
for unaligned memory accesses, which happen when data is
accessed from an address not a multiple of its size. This issue
is common in the automotive field for various reasons,
including compression algorithms like LZ4 [4] that may
involve random combinations of aligned and unaligned
accesses, on top of other operational complexities.

Investigations into the standard memcpy reveal significant
idle time due to cache misses, indicating opportunities for
optimization to enhance performance and memory efficiency.

This paper presents an optimized memcpy for 32-bit ARM
MCUs used on automotive systems with little-endian byte
ordering, utilizing the Greenhills toolchain during the
software development process.

II. EXISTING SOLUTION

This section focuses on the standard implementation of the
memcpy algorithm, as the subsections examine its strengths,

potential limitations, as well as evaluate whether this existing
implementation addresses current challenges effectively.

A. Standard memcpy

The standard memcpy implementation, written in ARM
assembly [5], efficiently handles larger volumes of data in
four-byte chunks when the source address, destination
address, and length are all aligned to 4 bytes. Figure 1
illustrates how this optimization (is compiled to) leverage
single-register load/store instructions, such as LDR and STR,
to improve performance. However, if any of these parameters
are unaligned, the standard algorithm falls back to a less
efficient, byte-by-byte transfer approach.

Fig. 1. Block diagram for standard memcpy

Fig. 2. Observing idle gaps on standard memcpy

Figure 2 shows further analysis on an oscilloscope,
revealing a visible gap after every 32 bytes of data copied.
This gap indicates substantial idle time caused by cache
misses when the CPU retrieves data from the source and
transfers it to the destination, a problem also present in

existing GNU LIBC implementations [6]. This observation
highlights potential opportunities for optimizing the memcpy
operation to minimize these idle periods and enhance the
algorithm's performance and overall memory efficiency.

As observed, the oscilloscope measurements reveal
significant idle periods due to cache miss-induced latency,
evidenced by gaps after every 32 bytes of data transfer.
Optimization efforts are constrained by the utilization of a
single register for bulk data movement despite the availability
of additional unbanked registers that could enhance
throughput. Moreover, the algorithm reverts to a byte-by-byte
transfer mode when the source or destination addresses are
unaligned, leading to suboptimal performance. These
observations underscore the need for advanced optimization
strategies to address these performance bottlenecks of current
memcpy implementations on ARM-based systems.

III. MEMORY OPTIMIZATION TECHNIQUES

Based on the above findings, several memory optimization
techniques have been identified as potential solutions for
addressing the identified performance bottlenecks and
inefficiencies.

A. Cache Prefetching

The ARM instruction set includes the PLD (Preload Data)
instruction, which allows the processor to asynchronously
prefetch data from the main memory into the data cache. This
prefetching reduces latency by ensuring that data is readily
available in the cache when needed, mitigating the delays
associated with accessing slower main memory. Furthermore,
the PLD instruction functions as an NOP (no operation) on
non-cacheable memory without adverse effects on such
systems [7, Chapter A3.8.4]. By leveraging the PLD
instruction, it is possible to reduce idle time and prepare data
in advance, thereby addressing the observable gaps in the
standard memcpy implementation as detected via oscilloscope
analysis.

B. Multiple Register Access Per Instruction

A key feature of the ARM architecture is its capability to
perform multiple register accesses within a single instruction,
exemplified by the Load Multiple (LDM) and Store Multiple
(STM) instructions [7, Chapter A4.7]. This functionality is
particularly advantageous in scenarios requiring the rapid
transfer of large data blocks between memory locations, as it
significantly reduces the overhead associated with repetitive
load/store operations. Leveraging LDM and STM instructions
can enhance the efficiency of memcpy to optimize its overall
data transfer performance.

C. Data Alignment

Memory alignment is critical for system performance and
reliability, as unaligned access generally incur cycle penalties
[8, Chapter 3.3.2] and can lead to hardware faults. While some
processors, such as the Cortex-M7, can handle more efficient
accesses to specific unaligned memory locations using
instructions like LDR and STR [9, Chapter 3.3.5], others
enforce stricter alignment requirements. For example, the
Cortex-M0+ does not support unaligned access, resulting in a
HardFault if attempted [10, Chapter 3.3.4]. Even within the
Cortex-M7 architecture, not all memory regions support
unaligned accesses [9, Chapter 3.3.5]. Since memory
addresses tend to become aligned after a few bytes of copying,
maximizing such aligned accesses through innovative

manipulations can significantly enhance the performance of
memcpy operations.

IV. PROPOSED SOLUTION

The proposed algorithm design for the optimized memcpy
aims to boost performance in data copying operations by
leveraging identified memory optimization techniques. These
techniques enhance the efficiency of both aligned and
unaligned memory copies, thereby improving overall system
performance.

There are three primary use cases for executing memcpy in
a 32-bit MCU architecture, excluding the alignment of the
copy length as an optimization criterion. The processor instead
focuses on the alignment of the source and destination
addresses as shown in Figure 3.

Fig. 3. Block diagram for optimized memcpy

A. Copy between aligned source and destination

With data alignment achieved for source and destination
addresses, advanced techniques such as cache prefetching and
multiple register access per instruction can be utilized without
incurring additional cycle penalties. Data from the source
address can be prefetched asynchronously into the data cache
several cache lines ahead while the processor concurrently
writes any current bytes to main memory via the store buffer
when STM instructions have been executed. By preloading
data into the cache, the processor can load large chunks of
anticipated data into registers from the faster cache memory
rather than accessing the slower main memory when load
multiple instructions are invoked. This is illustrated in Figure
3, within box 1.

B. Copy between unaligned source and/or destination

In a 32-bit MCU, alignment of both source and destination
addresses can be simultaneously achieved if their final 2 bits
are identical after copying a certain number of bytes. For
example, when the source and destination addresses are
initially located at 0x9 and 0x49, respectively, after copying 3
bytes of data, both addresses will become aligned at 0xC and
0x4C. Once alignment is attained, the optimized algorithm can
transition to the code path designated for copying between
aligned source and destination addresses, thereby leveraging
the existing optimizations detailed in the previous subsection.
This is illustrated in Figure 3, within box 2.

In contrary, the source and destination addresses cannot be
aligned if their final 2 bits are different, regardless of the
amount of data copied. Therefore, alignment techniques for
the source and destination addresses must be considered and
performed separately. A byte-by-byte approach is utilized for
the destination address until it becomes aligned to 4 bytes.
Once this alignment is achieved, the process narrows down to
three possible scenarios, where the offset required to align the
source address is either 1, 2, or 3 bytes. This offset can be

loaded and stored in a spare register to achieve alignment for
the source address. At this point, the source and destination
addresses will be aligned, enabling optimization techniques
such as multiple register access per instruction and cache
prefetching without incurring cycle penalties.

However, advanced byte-shifting techniques are necessary
to ensure accurate data copying from the source to the
destination, as shown in Figure 4. For example, with an offset
of 1 byte to align the source address in a little-endian system,
after the first offset byte is loaded into a spare register, the next
4 bytes loaded into another register must be shifted left by 8
bits. This shift allows the merging of only 3 bytes with the first
byte, ensuring the correct data is retrieved. This process is
repeated for all subsequent data until a store multiple
instruction is executed.

Fig. 4. Example of byte shifting

At the end of this process, any remaining offset bytes must
be accurately stored back into memory, which involves
ensuring that these bytes are correctly aligned and placed into
the appropriate memory locations to maintain data integrity
and consistency. This is illustrated in Figure 3, within box 3.

V. EXPERIMENTATION AND FINDINGS

The experiments described in this section were designed
to assess its performance enhancements across various
memory configurations, and were conducted at an active clock
frequency of 100 MHz across three memory types: NC (non-
cacheable memory), M1 (cacheable memory), and M2
(smaller cacheable memory with different protocol than M1),
ranked by their processing speed. Test sizes ranged from 2KB
to 20KB as the testing program encompassed five distinct
types of tests: aligned, unaligned with the same final 2 bits,
and offsets of 3, 2, and 1 byte (considered as unaligned with
different final 2 bits). Each test type was executed ten times to
ensure the statistical significance and reliability of the results.

A. Validation Steps

The performance test procedure involved initialising a
source buffer with data, then flushing and invalidating the data
cache associated with the test buffers to ensure results were
unaffected by any residing data in the cache. Interrupts were
suspended to prevent higher-priority tasks from affecting
performance measurements during the memcpy operations.
System timers recorded the execution time of each memcpy
instance. Bandwidth results were calculated based on test size
and execution time, before the results were compared between
the optimized and standard memcpy implementations.
Following the optimizations, a second round of oscilloscope
analysis was also conducted to verify the effectiveness of the
implementation, particularly in reducing the gaps previously
observed after every 32 bytes of data copying.

B. Results and Analysis

This section presents and analyzes the outcomes of the
tests conducted to evaluate the performance of the proposed
optimized memcpy implementation, which has previously

been verified to maintain accurate data copying by checking
for an expected return value of 0 using a memcmp after
copying data from a source to its destination.

Tables I, II and III provide the percentage improvement of
the optimized memcpy over the standard implementation for
various memory transfer configurations and data sizes (2k, 4k,
8k, 16k, 20k) for aligned and unaligned (same and different
final 2 bits) memory transfers.

TABLE I. IMPROVEMENTS FOR ALIGNED MEMORY TRANSFERS

Source to Destination
Data size

2k 4k 8k 16k 20k

M1 to M1 66% 81% 91% 81% 72%

M1 to M2 62% 69% 52% -24% -27%

M2 to M1 63% 66% 68% 72% 72%

M2 to M2 46% 65% 37% 4% -3%

NC to NC -2% 0% -1% -1% 1%

NC to M1 -2% -2% -1% 0% -1%

NC to M2 1% 0% 0% 0% 0%

M2 to NC 178% 183% 185% 186% 186%

M1 to NC 175% 197% 212% 220% 222%

TABLE II. IMPROVEMENTS FOR UNALIGNED MEMORY TRANSFERS
(SAME FINAL 2 BITS)

Source to Destination
Data size

2k 4k 8k 16k 20k

M1 to M1 192% 237% 257% 248% 244%

M1 to M2 189% 224% 177% 25% 30%

M2 to M1 60% 65% 67% 66% 66%

M2 to M2 58% 59% 122% 27% 14%

NC to NC 248% 340% 416% 466% 479%

NC to M1 202% 280% 337% 380% 390%

NC to M2 54% 52% 52% 47% 45%

M2 to NC 620% 639% 648% 653% 654%

M1 to NC 633% 697% 735% 757% 762%

TABLE III. IMPROVEMENTS FOR UNALIGNED MEMORY TRANSFERS
(DIFFERENT FINAL 2 BITS)

Source to Destination
Data size

2k 4k 8k 16k 20k

M1 to M1 110% 125% 132% 129% 128%

M1 to M2 107% 123% 94% 24% 25%

M2 to M1 67% 71% 72% 66% 65%

M2 to M2 67% 68% 41% 5% 3%

NC to NC 101% 116% 126% 127% 126%

NC to M1 70% 81% 90% 95% 96%

NC to M2 52% 50% 50% 44% 43%

M2 to NC 666% 675% 697% 699% 703%

M1 to NC 516% 549% 579% 590% 594%

Generally, bandwidth increases are observed for scenarios

involving cacheable source memories until the cache is
exhausted for certain memory protocols, as evidenced by test
sizes exceeding 8KB for M2 destinations, notably with even
negative increases of -24% and -27%, observed at 16k and 20k
respectively during M1 to M2, as shown in Table I.

In contrast, the most significant improvements are
observed in M2 to NC and M1 to NC transfers, with gains of
up to 703% and 762%, as shown in Tables III and II
respectively, highlighting the efficiency of the optimized
memcpy for cacheable to non-cacheable memory operations.
While there may be negligible impact on bandwidth for non-
cacheable source memories during aligned memory transfers,
substantial performance improvements of up to 479%, as
shown in Table II, are still observed across these non-
cacheable scenarios during unaligned memory transfers.

Overall, the optimized memcpy offers significant
enhancements in data transfer performance, particularly for
unaligned memory transfers with up to eight times
improvements. These gains can be achieved with a modest
increase of less than half a kilobyte in code size, making the
optimized implementation a viable and efficient solution for
automotive embedded systems requiring high-performance
data transfers.

Fig. 5. Pipeline activity for optimized memcpy on the oscilloscope

As illustrated in Figure 5, the pipeline activity analysis
validates the concurrent process of data prefetching from the
memory device. At the same time, the processor accesses the
previous 32 bytes from the cache. This asynchronous
prefetching strategy significantly enhances overall memory
performance by effectively overlapping data retrieval with
processor execution, minimizing latency, and maximizing
data throughput.

While further optimization may be needed for specific
scenarios involving these heterogeneous memory protocols,
especially for scenarios involving M2 destinations during
larger data transfers, the optimized memcpy has demonstrated
substantial performance enhancements across various data
transfer use cases in automotive embedded systems with
minimal downsides that effectively balances improved
efficiency and resource utilization, making it a robust solution
for automotive embedded systems.

VI. CONCLUSION

The optimized memcpy algorithm presented in this paper
significantly enhances the performance of data transfer
operations in 32-bit ARM microcontrollers, addressing the
inefficiencies of existing memcpy implementations. By
employing advanced memory optimization techniques such as
cache prefetching, multiple register access per instruction, and
precise data alignment, the proposed solution effectively

reduces idle time and improves data throughput. Experimental
validation across various memory configurations and data
sizes demonstrates substantial performance gains, particularly
for unaligned memory transfers, with improvements reaching
up to 762%. These enhancements can be achieved with a
minimal increase in code size, ensuring the solution's viability
in resource-constrained automotive embedded systems while
meeting the stringent performance requirements of real-time
automotive applications.

VII. FUTURE WORK

Future work could focus on further optimizing the
algorithm for specific memory configurations and larger data
transfers, especially for aligned memory transfers.
Additionally, exploring the potential for hardware-level
support to further enhance memory transfer efficiency could
yield significant benefits. Extending these optimization
techniques to other commonly used functions in automotive
embedded systems could also provide comprehensive
performance improvements across the board as the concepts
and techniques utilized in this study are expected to be
reusable across multiple CPU architectures, such as the
TriCore, with only minor adaptations required for the source
code.

ACKNOWLEDGMENT

We would like to express our gratitude to Continental
Automotive for providing us with the opportunity to explore
and work on this optimized memcpy. We acknowledge that the
source code and memory types used in this paper are
proprietary and will remain confidential, and as such, shall not
be published.

REFERENCES
[1] G. Schirner and R. Domer, “ABSTRACT COMMUNICATION

MODELING: A Case Study Using the CAN Automotive Bus,” Jan.
2005. [Online]. Available:

https://www.cecs.uci.edu/~doemer/publications/IESS_05_125.pdf

[2] L. Harvie, “RTOS Essentials: A Quickstart Guide for Embedded
Engineers.”, Mar. 2024. [Online]. Available:

https://runtimerec.com/wp-content/uploads/2024/03/rtos-essentials-
ebook.pdf

[3] A. Fog, “Instructions for asmlib: A multi-platform library of highly
optimized functions for C and C++,” May. 2022. [Online]. Available:

https://agner.org/optimize/asmlib-instructions.pdf

[4] Various contributors, lz4.c, 2024, GitHub Repository. [Online].
Available:

https://github.com/lz4/lz4/blob/dev/lib/lz4.c.

[5] G. Chatelet, C. Kennelly, S. (L.) Xi, O. Sykora, C. Courbet, X. D. Li,
and B. D. Backer, “automemcpy: A Framework for Automatic
Generation of Fundamental Memory Operations,” in Proc. 2021 ACM
SIGPLAN International Symposium on Memory Management (ISMM
’21), Virtual, Canada, June 22, 2021. doi:

https://doi.org/10.1145/3459898.3463904.

[6] Various contributors, “25131 – memcpy performance problem with
ARM 32 A9be due to high cache-misses,” 2019. [Online]. Available:

https://sourceware.org/bugzilla//show_bug.cgi?id=25131

[7] ARM, ARMv7-M Architecture Reference Manual (Revision r1p0),
2005.

[8] ARM, ARM Cortex-M4 Technical Reference Manual (Revision r0p0),
2010.

[9] ARM, ARM Cortex-M7 Devices Generic User Guide (Revision r1p2),
2015.

[10] ARM, ARM Cortex-M0+ Devices Generic User Guide (Revision
r0p1), 2012.

